ANTINEOPLASTIC ACTIVITY AND CYTOTOXICITY OF FLAVONES, ISOFLAVONES, AND FLAVANONES¹ ### J. MICHAEL EDWARDS School of Pharmacy, University of Connecticut, Storrs, CT 06268, U.S.A. ## ROBERT F. RAFFAUF and PHILIP W. LE QUESNE Departments of Chemistry, and Medicinal Chemistry and Pharmacology, Northeastern University, Boston, MA 02115, U.S.A. ABSTRACT.—Several hundred flavonoid derivatives, natural and synthetic, which have been tested in the screening program of the National Cancer Institute, have been examined for indications of structure-activity relationships which might exist among these compounds. No such relationships are apparent. In spite of occasional activity these compounds do not warrant further detailed pursuit as anti-tumor agents. Recent review articles (1) and research publications (2, 3, 4) in the phytochemical literature have referred to the cytotoxic activity of flavonoid compounds. The small number of these reports might suggest that few data are available in this area. In fact, during the last ten years there has been a considerable sustained activity in the testing of such compounds, prepared by many investigators, by the National Cancer Institute. It is our purpose in this paper to summarize hitherto unpublished test data, kindly made available by the N.C.I. Our primary aim is to make the data available in a convenient form, thereby providing a basis for studying such structure-activity relationships as may exist among these compounds. Both naturally occurring and synthetic compounds were tested. The data are presented in Tables 1-3. The compounds are arranged in groups according to similarity of substituent types, so that differences in biological activity may be discerned between groups having different substituents, and within groups having differently arrayed substituents. No test data were available for isoflavanones. Although none of these compounds shows PS or LE activity,2 it will be seen that twelve of the compounds exhibit in vivo activity against CA, LL, WA, and FV systems.² Insofar as activity in these systems represents antineoplastic activity, it can be seen that there is no obvious correlation for these compounds between KB activity (where data are available), and antineoplastic activity. To a degree, the types of data available reflect the screening procedures current when the compounds were submitted for testing; often, compounds for which only KB data are available were tested more recently than those which are quoted as inactive in a number of systems. Some compounds, e.g. the flavanones having doubly oxygenated substituents at poisition 3, show cytotoxicity vs. KB while displaying (where data are available) no activity against what would now be regarded as "second generation" screening systems. Perusal of the data available, tabulated as above, has revealed to us no structureactivity correlation general enough to serve as a working hypothesis for a rationale of the activity of these compounds. It might be possible, however, to consider that the cytotoxicity rs. KB of the potential α -diketonic flavanones represents a ¹Part VII in the Northeastern series of publications on Antitumor Plants. For Part VI see, P. W. Le Quesne, S. B. Levery, M. D. Menachery, T. F. Brennan, and R. F. Raffauf, J. Chem. Soc. Perkin I, in the press. ²See Abbreviations to the Tables. # Table 1. Flavones. | N.S.C. No. | Description | ED ₅₀ KB
μg/mL | In vivo tumor systems | |---|--|--|--| | 19028
69566
127487
93401
93396
93392
22356
22357
73613
68222
102045
65033
19031
66222
26744
93394
94258
123383
127572
123414
93405
93381 | Oxime 7-OS; 3',4'-MDO 2'-F 3'-F 4'-F 3'-OH 4'-OH 3'-NO ₂ 3'-OSO ₂ Me 3',4'-MDO 2',3',4'-triMeO 2',4'-diMeO; 5'-Br 7,8,2'-triMeO 6-OH 6-F 7-OH 7-OH; 3',4'-diMeO 7-OH; 3',4',5'-triMeO 7-OH; 4'-MeO 7-F 6,8-diF | 8.5
2.0
>100
13-100
4-27
18 | CA-, LE-, SA- LE-, SA- LE-, LL-, SA- LE-, LL-, SA- LE-, LL-, SA- LE-, LL-, SA- CA-, LE-, SA- CA-, LE-, LL-, SA- CA-, LE-, LL-, SA- CA-, LE-, LL-, SA- CA-, LE-, LL-, SA- SA-, WA-; LL+ LL-, SA- LE- LE- LE- LE- LE-, SA- | | 93405 | 7-F 6,8-diF 4'-MeO 7-OH 7,4'-diOH 7-OH; 4'-MeO 7-OH; 3',4'-diMeO 7-OH; 3',4'-diMeO 7-OH; 2',4',6'-triMeO 7-MeO 7,4'-diMeO 7,4'-diMeO 7-Me; 3',4'-diMeO 7-Me; 3',4'-diMeO 7-Me; 3',4'-diMeO 7-Me; 3',4'-diMeO 7-Me; 3',4'-diMeO 7-Me; 3',4'-diMeO 8,2'-diAc; 3',5'-diOH 7,8-diOH 6-MeO; 7,4'-diOH 6,4-diMeO; 7-OH 6,3',4'-triMeO; 7-OH 6,7,4'-triMeO; 3'-OH 7,4'-diOH; 8-CS; 3'-MeO 6,7,8,4'-tetraOH 6,7,8-triMeO; 4'-OH 6,7,8-triMeO; 4'-OH 6,7,8,4'-tetraMeO | | | | 84889
133101 | 6,7,8,3',4',5'-hexaMeO
3,4-diOH; 8-CS | 25 | | TABLE 1. Continued. | Table 1. Continued. | | | | |--|--|---|---| | N.S.C. No. | Description | ED ₅₀ KB
μg/mL | In vivo tumor systems | | 5-Methoxy-
53907
53906
53908
66067
53909 | 7,4'-diMeO; 6-OH
6,7-diMeO; 4'-OH
6,7,4'-triMeO
6,7,8,-triMeO; 4'-OAc
4',6,7,8-tetraMeO | 19
27
3–46
15 | CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LL-, SA-
CA-, LL-, SA-
PX+ | | 68281
71304
83281
83280
76751
71301
71302
71300
102343
83279
67580
67830
5-Methyl- | 6,7,8-triMeO; 4'-EtO
6,7,8-triMeO; 4'-PrO
6,7,8-triMeO; 4'-iPrO
6,7,8-triMeO; 4'-allylO
6,7,8,3',4'-pentaMeO
6,7,8,2',4'-pentaMeO
6,7,8,3',5'-pentaMeO
6,7,8,2',5'-pentaMeO
6,7,8-triMeO; 3',4'-MDO
6,7,8,2',4',5'-hexaMeO
6,7,8,3',4',5'-hexaMeO
6,7,8,3',4',5'-hexaMeO
6,7,8,2',3',4',5'-bexaMeO | 30
>100
26
3-28
15
3-30
4-12
13
0.5-7
4-30 | LL-, WA-
LL-, SA-
LL-, SA-; FV+
SA-; FV+
LE-, WA-
LL-; WA+
CA-, LE-, LL-, SA-
LL- | | 121858
123384
123385
3-Hydroxy-
57653 | 7-OH; 4'-MeO
7-OH; 3',4'-diMeO
7-OH; 3',4',5'-triMeO | 0.2-8 | LE-
LE-
LE-
Bl-, CA-, LE-, LL-, | | 58587
58586
58585
102030
102048
102042
78633
78635
102051
78634
46668
407010
407331
102029
102057
19029 | Zr-CPX
Pb-CPX
Zn-CPX
4'-MeO
4'-Cl
4'-Me
2',6'-diOH
2',6'-diMeO
3',4'-diMeO
3',4',6'-triMeO
7-OH; 4'-Cl
7,3',4'-triOH
7,3',4',5'-tetraOH
7,4'-diMeO
7,3',4'-triMeO
6-Me | >100
1-16
5-10
>100
25 | PS-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
LE-
LE-, WA-
LE-
FV-, LE-, SA-
FV-, LE-, SA-
LE-
FV-, LE-, SA-
LE-, SA-
LE-, LL-, PS-, SA-
LE-, LL-, PS-, SA-
LE-, LL-, PS-, SA- | | 19024
401510
407229
407289
407294
9219
57655
19801
58588
19802
115917
102049
407290
115916
3-Methoxy-
31882
154016
168805
106970
168804 | 6-Me; 4'-MeO 7-MeO 5,7-diOH 5,7,4'-triOH 5,7-diOH; 4'-MeO 5,7,3',4'-tetraOH Aluminum dvt. of 9219 5,7,2',4'-tetraOH Zr dvt. if 9219 5,3',4'-triOH; 7-MeO 5,3',4'-triOH; 7-OS 5,7,3',4'-tetraMeO 5,7,3',4'-bentaOH 5,6,7,3',4'-pentaOH 5,7-diOH; 4'-MeO 5,7,3',4'-tetraOH 5,4'-diOH; 7,3'-diMeO 5,7,3'-triOH; 4'-MeO 5,7,3'-triOH; 4'-MeO 5,7,3'-triOH; 4'-MeO 5,7,3'-triOH; 4'-MeO 5,7-diOH; 3',4'-diMeO 5,7-diOH; 3',4'-diMeO | 2-38
26
>100
26
20
25
25
28
15
27
17 | WA+
 CA-, LE-, SA-
 CA-, LE-, SA-
 CA-, LE-, PS-, SA-
 CA-, LE-, SA-
 CA-, LE-, SA-
 CA-, LE-, SA-
 LE-
 Bl-, LE-
 LE-, SA-; CA+
 LE-
 PS-
 LE-
 LE- | Table 1. Continued. | | | · · · · · · · · · · · · · · · · · · · | | |---|--|---|--| | N.S.C. No. | Description | $\mathrm{ED}_{50}~\mathrm{KB} \ \mu\mathrm{g/ml}$ | In vivo tumor systems | | $\begin{array}{c} 61837 \\ 408169 \end{array}$ | 5-OH; 7,3',4'-triMeO
Co dvt. of 5-OH; 6,3',4'-
triMeO | 41
34 | CA-, LE-, SA- | | $\begin{array}{c} 408170 \\ 408171 \\ 168806 \end{array}$ | Sn dvt. of same
Zn dvt. of same
5-OH; 3',4'-diMeO; | 50
37 | LE- | | 106969
115922
31884 | 7-(3"-Me-2-butenyl)
5,7,3'-triOH; 6,4'-diMeO
5,7,3',4'-tetraMeO
5,7-diAcO; 4'-MeO | 0.4-3
25 | PS-
LE-, SA-; CA+ | | 3-Glycosyloxy-
(Various sugars)
115918
167410 | 5,7,3',4'-tetraOH
6,8,3',4'-tetraOH | 26 | LE- | | 9222
9220 | 7-OS; 4'-OH
5,7,3',4'-tetraOH | >100 | LE-, CA-, PS-, SA-
CA-, LE-, LL-, SA-,
DL-; WA+ | | $\begin{array}{c} 19804 \\ 408168 \\ 407304 \end{array}$ | 7-MeO; 3',4',5-triOH
Cd dvt. of 115918
5,7,3',4'-tetraOH | 8.5
8.5
>100 | CA-, LE-, LL-, SA-
CA-, LE-, LL-, PS-,
SA-, DL-, WA- | | 9221
134057
19803
Miscellaneous | same as 407304
6,7-diMeO; 4',5-diOH
5,6,3',4',5'-pentaOH | 8.3 | LE-
CA-, LE-, LL-, SA- | | 61836
65031
67942
69569 | 3,7,3',4'-tetraAcO; 5-OH
3-NH ₂
3-NHAc | >100
>100
>100 | CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA- | | 71096
74877
97706 | 3-NHSO ₂ Me
3-NH ₂ ; 6-C!
3-Cl; 2'-OH
3,6-diCl; 2'- <i>i</i> PrO; 5'-Me | >100
>100
22
60 | SA-
FV-, LE-, SA- | | $74876 \\ 74931 \\ 74899 \\ 74882$ | 3,6-diCl
 3,6-diCl; 2',4',6'-triMe
 3,6-diCl; 2'- <i>i</i> PrO; 4'-Me
 3-Cl; 6-Me | >100
>100
22
>100 | SA+ | | 80479
114649 | 3-Me; 7-MeO
3-Me; 8-COOCH ₂ CH ₂ -
piperidyl(HCl) | >100 | LE-, SA-; FV+
LE- | | 114650
169869 | 3-Me; 7-MeO;
8-CH ₂ NMe ₂ (HCl)
free base of 114650 | 22 | LE-
Bl-, LE- | | 67938 | 3-NH ₂ , N,N-bis-methyl-
sulfonamide | >100 | CA-, LE-, SA- | | 115919 | 3,5,7,3',4'-pentaAcO | | LE- | point of departure for further analogue synthesis. It is also possible that some of the compounds may inhibit mitotic spindle formation, owing to their possession of contiguous alkoxy-groups deviating from strict coplanarity (5). However, the data suggest that a flavonoid compound having activity vs. KB of 1–30 μ g/ml is unlikely to be of further interest as an antineoplastic compound. # Table 2. Flavanones. | N.S.C. No. | Description | ED ₅₀ KB
μg/mL | In vivo tumor systems | |---|---|------------------------------|--| | Chloro Derivatives 54892 39251 50188 50189 50190 39249 39250 39248 54882 | 3-Cl
6-Cl
2'-Cl
3'-Cl
4'-Cl
6,4'-diCl
6,2'-diCl
6,2',4'-triCl
2,3-diCl | 1-8.5 | CA-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
LE-, SA-; CA+
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-, DL-
CA-, LE-, SA- | | 54872
2-Methoxy-
102050
102055
102056
102035
102036
102040 | 2,3,6,4'-tetraCl 3-(OH)(MeO); 6-MeO 3-diOH 3-(OH)(MeO); 3',4'-diMeO 3-diOH; 4'-MeO 3-(OH)(MeO); 7,4'-diMeO 3-(OH)(MeO); 4'-Cl | 19 | SA-
LE-, WA-
LE-, WA-
LE-, WA-
LE-, WA-
LE-, WA- | | 102041
102043
102044
102047
95848
102032
3-Hydroxy- | 3-(OH) (MeO); 4'-Me
3-diOH; 7-MeO
3-(OH) (MeO); 7,4',4'-triMeO
3-diOH; 7,4'-diMeO
3-(OH) (MeO)
3-(OH) (MeO)
3-(OH) (CH ₂ NO ₂) | 20
2.8
34 | LE-, WA-
LE-
LE-
LE- | | 59264
59266
2801
36398
3-Methoxy- | 7,3',4'-triOH
7,3',4',5'-tetraOH
5,7,3',4'-tetraOH
6,7,3',4'-tetraOH | 23
40–100 | CA-, LE-, SA-, LL-
CA-, LE-, SA-
CA-, SA-, WA-
EA-, LE-, PS-, SA- | | 135827
135828
5-Hydroxy-
57654 | 5,4'-diOH; 6,7,3'-triMeO
5,3'-OS; 6,7,4'-triMeO
7,3'-diOH; 4'-MeO | | LE-
LE-
CA-, LE-, SA- | | $\begin{array}{c} 61835 \\ 170987 \\ 180246 \\ 93745 \\ 5548 \\ 11855 \\ 31048 \end{array}$ | 7,3'-diOH; 4'-MeO; Pb CPX
7-OS; 5,2',5'-triOH; 4'-MeO
6-Me; 7,4'-diOH
7-OS; 4'-OH; iPrOH CPX
7-OS; 4'-OH
7,4'-diOH
7-OS; 3'-OH; 4'-MeO | 42
>100
57
>100 | CA-, LE-, SA-
LE-
LE-
8P-, LE-, SA-
DL-; WA+
LE-, SA-
CA-, LE-, SA- | | 34875
43318
44184
135064
440228 | 7,4'-diOH
7-OH
7-OS: 3'-OH; 4'-MeO
 4'-OH; 7-OS
7-MeO; 4'-OH | 13 | CA-, LE-, LL-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
SA-, WA- | | 5-Methoxy-
55274
56293
58249
65887
51170 | 6,7-diMeO; 4'-OH
 6,4'-diOH; 7-MeO
6-OH; 7,4'-diMeO
6,7,8-triMeO; 4'-OH
 6,7,4'-triMeO | 26 | CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA-
CA-, LE-, SA- | Table 2. Continued. | N.S.C. No. | Description | ${\rm ED_{50}~KB}\atop \mu\rm g/mL}$ | In vivo tumor systems | |---------------|--------------------------|--------------------------------------|-----------------------| | Miscellaneous | | | | | 407308 | 5-OS; 7-MeO; 4'-OH | >100 | SA- | | 5884 | 6-Me; 8-MeO | 26 | CA-, LE-, SA- | | 16721 | 3'-MeO; 4'-OH | | LE-, SA- | | 37458 | 5,7,3'-triAcO; 4'-MeO | | CA-, LE-, SA- | | 39252 | 6.4 -diMeO | | CA-, LE-, SA- | | 102034 | 3=O | | LE- | | 65028 | 3 = NOH | 35 | CA-, LE-, SA- | | 102052 | 2-EtO; 3-(OH)(EtO) | | LE-, WA- | | 50184 | 6-MeO | | CA-, LE-; SA+ | | 50185 | 3',4'-diMeO | | CA-, LE-, SA- | | 50186 | 6.2'-diMeO | 24 | CA-, LE-, SA- | | 50187 | 4 ¹ -MeO | | CA-, LE-, SA- | | 67943 | 3-NH ₂ (HCl) | 3-5 | CA-, LE-, SA- | | 69568 | $3-{ m NHSO_2Me}$ | 10 | LE-, SA- | | 71094 | $3-NH_2(HCl)$; $4'-MeO$ | >100 | SA- | | 50393 | | | CA-, FV-, LE-, SA- | TABLE 3. Isoflavones. Abbreviations to the Tables $\begin{array}{c} {\rm Compound\ descriptions} \\ {\rm Ac = Acetyl} \\ {\rm CPX = Complex} \end{array}$ MDO = Methylenedioxy S=Sugar residue Other abbreviations have their usual significance. Tumor systems Bl=B16 Melanocarcinoma CA = Adenocarcinoma 755 DL = Dunning leukemia FV=Friend virus leukemia LE = L-1210 lymphoid leukemia LL = Lewis lung carcinoma PS = P-388 Lymphocytic leukemia PX = Plasmacytoma No. 1/cytoxan NSC 38280 PI = Plasmacytoma No. 1 8P = P-1798 Lymphosarcoma SA = Sarcoma 180 WA=Walker carcinosarcoma 256 (s.c.) Note: The absence of specific data in the KB test system indicates that such data are not available for that system. All compounds rated positive in the *in vivo* systems mentioned had T/C < 140% with the exception of the following: 71302 (179% in one test), 83279 (160, 147%), 9219 (230, 180%), 31882 (302%), 31884 (164%), 80479 (162%), 50189 (160%), 5548 (168, 157%), 64693 (332, 229%). #### ACKNOWLEDGMENTS The work at Northeastern University was supported by Grant No. CA-13001/03-04 from the National Cancer Institute, DHEW, to whom we express our thanks. We are very grateful to Dr. Matthew Suffness, Head, Plant and Animal Products Section, Natural Products Branch, DTP, Division of Cancer Treatment, NCI, for making the data available to us. Received 12 May 1978. #### LITERATURE CITED G. A. CORDELL and N. R. FARNSWORTH, Lloydia, 40, 1 (1977). S. M. KUPCHAN, C. W. SIGEL, R. J. HEMINGWAY, J. R. KNOX, and M. S. UDAYAMURTHY, Tetrahedron, 25, 1603 (1969). C. D. Hufford and W. L. Lasswell, J. Org. Chem., 41, 1297 (1976). P. W. Le Quesne, M. P. Pastore, and R. F. Raffauf, Lloydia, 39, 391 (1976). S. M. Kupchan, K. L. Stevens, E. A. Rohlfing, B. R. Sickles, A. T. Sneden, R. W. Miller, and R. F. Bryan, J. Org. Chem., 43, 586 (1978).